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ABSTRACT

A new theoretical procedure has been developed modifying the exist-
ing analysis for a marine propeller operating in a nonuniform inflow field
by considering the radially varying mean wake and mean propeller induction,
In addition, the selection of a new reference surface around which the
perturbation analysis is developed is based on the nonlinear form of the
Bernoulli equation together with an appropriate kinematic condition exist-
ing at the propeller operational condition. A flow field closer to the
propeller operating condition is achieved thereby and the linear theory
requirement of small perturbation quantities is reinforced. The approach
is thus applicable to moderately to heavily loaded propellers immersed in
the stronger wakes of hulls of large block coefficient, although it can be

used for lightly loaded propellers as well.

KEYWORDS

Hydrodynamics
Moderately Loaded Propellers

Blade Pressure Distribution
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MECHING px

BLANK-NOP FILMED
NOMENCLATURE
A(x) function defined in Eq.(17)
a(r) inverse advance ratio (Eq.l4)
a, effective inverse advance ratio (Eq.h41)
a designation of NACA-a meanline
CP pressure coefficient
c(r) expanded chord length, ft
X,¥,2 propeller~induced forces in x,y,z direction
fc camberiine ordinates from face pitch line
f,r blade thickness distribution over one side of blade section
Im( ) modified Bessel function of first kind, of order m
I(ﬁ)( ) defined in Eq.(6)
i index
Jd design advance ratio
Jod off-design advance ratio
AJ Jod-Jd
j index
K kernel of integral equation
R(ﬁ’ﬁ) modified kernel after chordwise integrations
Km( ) modified Bessel function of second kind of order m
k variable of integration

L(q)(p,ea) loading distribution in 1b/ft

L(q)(r) spanwise loading in 1b/ft

L(q’ﬁ)(p) spanwise loading coefficients of the chordwise modes in 1b/ft
£ integer multiple

My blade bending moment about face pitch line
vii
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source strength at point (g,p,eo)

index of summation

order of lift operator

number of blades

blade index

rps

order of chordwise mode

unit normal vector on helicoidal surface at loading point
unit normal vector on helicoidal surface at control point
pressure, Ib/ft®

P_ - P,, pressure jump, 1b/ft®

geometric pitch at each radial position, ft
propeller-induced moments about x,y,z axis

order of harmonic of inflow field

Descartes distance

radial ordinate of control point

propeller radius, ft

propeller lifting surface, ft*

chordwise location as fraction of chord length

time, sec |

maximum thickness of blade, ft

free stream velocity, ft/sec (design)

local speed of advance, ft/sec (design)

local speed of advance, ft/sec {off design)

variable of integration

axial, tangential and radial components of perturbation velocities

Fourier coefficients of the known downwash velocity distribution

viii
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normal velocity due to camber effects
normal velocity due to flow-incidence angle
normal velocity due to wake

normal velocity due to nonplanar thickness
longitudinal perturbation velocity (Vx-UA)
tangential perturbation velocity

measured axial velocity

mean wake velocity in radial direction
longitudinal ordinate of control point
cylindrical coordinates of control point
Cartesian coordinate system

tan-'(l/a(r)r)

defined in Eq.(4)

chordwise mode shapes

-Qt

angular ordinate of loading point

angular position of loading point with respect to blade
reference line, in moving coordinate system

subtended angle of projected blade semichord, radians
2m(n-1)/N, n=1,2, ... N

geometric pitch angle at each radial position

angular chordwise location of loading point

defined in Eq.(6) (see Appendix A)

defined in Appendix A

longitudinal ordinate of loading point

cylindrical coordinates of loading point

radial ordinate of loading point

mass density of fluid

ix
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Superscripts
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ratio of leading edge radius to chord

angular measure of skewness from blade reference line

o' - cp = difference in skewness at control and loading point
variable of integration

velocity potential

generalized lift operator

angular ordinate of control point

angular position of control point with respect to blade
reference line, in moving coordinate system

angular chordwise location of control point
acceleration potential

magnitude of angular velocity of propeller

refers to control point

refers to loading point
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INTRODUCTION

In the course of a series of investigations concerned with ad-
aptation of the unsteady lifting surface theory to marine propellers,]’zﬂ

the following basic assumptions have been made:

a) the propeller operates in a spatially nonuniform,
nonseparating and noncavitating flow of an inviscid

and incompressible fluid,

b) all perturbation quantities are considered to be small,
so that the linearized version of the theory may be used

as a basis,

c) a helicoidal surface of constant pitch (from hub-to-tip)
is selected as reference surface and deviations from this

surface are considered as the perturbation quantities.

The reference surface, over which the singularities are distributed,

is the "zero 1ift" helicoidal with constant pitch 2n’% where U is

the forward speed (ship speed) and Q the angular velocity of the
rotating propeller. Any deviation from this surface is taken to be
induced by perturbation velocities such as those due to ship wake,

incident flow angle, blade camber, non-planar blade thickness and
flow-distortion blade thickness. These effects have been considered
separately and then, as permitted in the linear theory, have been

added together to determine their combined effects on the loading and
hydrodynamic forces. The linearized version of the unsteady lifting
surface theory leads to an integral equation relating the unknown

loading distribution with the known onset velocities. The equation

is valid for a lightly loaded propeller with wakes of small magnitude
(intensity). With today's tendency toward longer and fuller hull forms, the
wake intensity behind the hull is quite strong. Thus the perturbation quan-
tities are larger so that the linearized theory is inadequate for the needs

of the propeller designer in regard to the prediction of mean thrust and
torque.

“Superior numbers in text matter refer to similarly numbered references

listed at the end of this report,

R e R R L _- - - . _— .
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The propeller operating in ship wake which varies with radial
and angular position not only encounters the spatial inhomogeneities
of the incoming flow but it is also under the influence of the self-
induced velocity field. The latter can be determined provided the
blade loadings are known which, in effect, requires "apriori” knowledge
of the reference surface. Thus an iterative procedure must be estab-
lished based, as a first step, on an assumed helicoidal reference
surface determined by the known variable hydrodynamic pitch anglie from
which the first approximations of blade loading and propeller induction
are determined. Having this induction and the radial variation of the
speed of advance a new reference surface is established and thus another
set of calculations is performed for the evaluation of the new blade
loading and induction effect. The iterative procedure is continued
until no variation in the pitch of the reference surface and in the

blade loading can be observed.

While the iterative procedure uses the same linearized approach
as developed in Reference 1, it takes into account the quadratic form
of the Bernoulli equation, since the pertubation velocities are some-
times of the same order of magnitude as the velocities of the undisturbed
flow in which case linearization of the pressure equation is not valid.
This procedure is appropriate to moderately loaded propeller opera-
tional conditions. Once the final geometry of the reference surface
is established, the solution of the integral equation relating the
unknown loading with the known onset velocities will determine the
blade pressure distribution and the corresponding hydrodynamic forces.
It should be noted that the imposed boundary conditions on the blade

are fixed and do not change during the iterative process.

The same reference surface is further used for the unsteady flow
conditions, since the unsteady onset velocities being small compared
to steady state velocities can be considered as perturbation without
running the risk of violating the basic requirements of the linearized

theory.
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ANALYSIS

1) Integral Equation

A theory and computer program have been developed for the case
of a lightly loaded propeller utilizing the small perturbation approxi-
mation by selecting as a reference surface the helicoidal surface of
"zero 1ift" with constant pitch (i.e., P = 21 % = %; where U = ship
speed and Q = propeller rotational velocity). However, many propellers
operate in strong wakes and at lower relative inflow velocities resulting
in larger deviation from the reference surface hitherto employed. These large

excursions violate the requirement of the small perturbation theory.

A new analysis is developed herein along the same general
lines as the small perturbation theory but with emphasis on the
selection of a more appropriate reference surface which simulates closely

the actual propeller operational conditions.

The linearized unsteady 1ifting surface theory for a marine pro-
peller, with its blades lying on a helicoidal surface and operating in
the nonuniform flow of an incompressible {deal fluid, is formulated by
means of acceleration potential method. 1t is based not only on a small
perturbation approximation but, also, on the assumptions that the pro-

pelier blades are thin and operate without cavitation and flow separation.

It may now be considered, more appropriately, that this propeller
operates in a spatially varying flow generated by a strong hull wake
and also under the influence of self-induction. Both these factors
will influence the selection of the proper reference surface in the
steady state flow conditions. It is assumed that the flow field in
which the propeller is immersed has velocity components given in cylindri-

cal coordinates by

UA(") + ui(X,r); Vi(x,r); wi(x,r‘) (n

U —— ———

as
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where UA(r) is the local speed of advance and wu,, Vis W, are the

axial, tangential and radial components of the perturbation velocities.

The relation between the velocity potential function % and
the acceleration potential function { has been established by solving

the linearized Euler equation of motion to obtain

i) = —) g repst - 221
8(x,r,o;t) T gw TR TR (2)

where U(r) = Wo,r) = UA(r) + ui(o,r) the axial component of the

resulting velocity at the propeller plane.

it is further known that the pressure field generated by a
lifting surface S s given by distributed doublets with axis parallel
to the local normal and with strength equal to the pressure jump across
the surface. The reference surface over which the doublets are dis-
tributed is a helicoidal surface with variable pitch along the radius.
These facts considered with Equation (2) lead (following Reference |)

to an integral equation which relates the known onset velocities
with the unknown blade loading at each frequency q:

Wr)e e IJ Ap(q)(s,p,eo) K(ry®9 50,8,39)dS (3)
s

where the kernel function is given by

N -iqé X
K(ryo 30,0 5q) = - ! — lim Z e n i, .r e'qa(r)(T-»X)
o) (o} hﬂpr(r) §70 -1 3 -
o) 1
Here
r + vi(r)
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Q = angular propeller velocity

UA(r) = speed of advance at the propeller plane at
radial location r

8~0 means x - mo/a(r) and & ~ Go/a(p)
e = 2TT(n-])/N n = ‘,auooN

= number of blades

Descartes distance between the control point (x,r,mo)

1
s 2
and loading point (g,p,eo) = L(T-§)2+r2+p2-2rpcos(eo-¢°+en-a(r)(7-x)]

P

a(p) 53 - — 53
ST+ 20 (02 5 - 5 53,

o)
on *
and

2 r (a(ry 2 - L 2)
on' N1+ a2(r)r§ 3% (209

are the normal derivatives at the loading and control point, respectively.

o

!t should be noted that the time factor has been eliminated from both
sides of Eq. (3) and it is understood that only the real part of

the solution is retained. A limiting process is introduced in the
kernel function to avoid the mathematical difficulty due to the presence
of a high order singularity. The kernel function being one of the most
complex in the 1ifting surface theory, attention is given to the numeri-
cal solution of the integral equation by means of a high-speed digital
computer. The analysis, however, has been carried out to the stage where
laborious computations can be efficiently performed by the numerical

procedure.

It has been assumed that the shape of the chordwise loading is
the same as has been shown by Landahl to be the appropriate one in
a two-dimensional flow. Furthermore, a method called the "generalized

lift operator" technique3

is applied to both sides of the integral
equation to reduce the surface integral equation to a line integral

equation along the propeller radius. Then by the collocation method

P e Wenr e mrem e - - ow _— - =

i SN
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the line integral equation is reduced to a set of algebraic equations

in the unknown spanwise loading distribution.

The following substitutions are made in Equations 3 and k:

L(“)(p,ea) = 'Y (g,0, 6,) * 08 1b/ft

_ AP AP < <
90 =0 eb cosea 0 ea ﬂ
r r
= - < ST
¢, =9 eb cos¢a 0 Qa

and the expansion of the inverse Descartes distance is

® imf e o +38 - -x)] i(t-g)k
1.1 < e'm[e° Potpralr)(r-x)] [ v gk (lklr)e|(T :) dk
R m= - e M m

for p < r (otherwise p and r in the modified Bessel functions must
be interchanged). Here ¢ is the propeller skewness (the angular posi-
tion of the midchord line from the generator line through the hub in

the projected propeller plane), eb is the subtended angle of the pro-
jected blade semichord, ea and wa are angular chordwise locations of
the loading and control points, respectively, and the superscripts ¢

and r refer to the values at the loading and control points, respectively.

After the chordwise integration and application of the 1ift-

operator, the integral Eq. (3) reduces to:

VD) i ((Wgery o "5 [ BN @R™D (05000 (5)

—
©
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and
R(E‘JE) - - N r . § _iqae
Lo U (r)U(r) a(p)[1+a2(r)F)} mecw ©
m=q+ 4N

{‘ ian(1- 2eho?

[N -

2(r)ow a(p)a(r)n+ fg]('?‘)(qe;).\("‘) (ar(1- by aoef |

. lm(a(r)lzmp) Km(a(r)mmr)

. Gr cp
k(37 - m)lm(uklp)Km(lklr)

Lo M ke ) (o) + 2
-=—e a(r)k+ —) (a(p)k + —) e
n - re p2 k-a( r)sN
1P (e o) A7 (e SEpef) akl. (6)
and Ao = o' - cp .
Here
m iycosy
1"y) = = 2Eé(m) e ¥y,
and
TT .
A 1 _ -nzcosea
A (Z) = o gdn) e Sinea dea

the details of which are presented in Appendix A.

The integral equation (5) is solved numerically by the usual
collocation method with the loading L'%"/(p) assumed to be constant
over each small radial strip. Then only the kernel needs to be inte-

grated over the radial strip.

b m ey e meow e - W — - . - —— -




R-2063

Reference | gives details of the analytical development and
the different numerical procedures used to obtain the finite contri-
butions of the Cauchy-type singularity of the k-integral at k = a(r).
(m - q) and of the higher-order Hadamard-type singularity when p = r.

2) Chordwise Modes

' ’ -
The proper selection of chordwise modes is dictated by the
loading distribution on a foil in two-dimensional flow conditions.
The same chordwise modes have been selected as those of Reference 2 .
a) Unsteady flow conditions
The unknown chordwise modes are approximated by the known
Birnbaum distribution which has the proper leading edge singularity
and satisfies the Kutta condition at the trailing edge.
nmax -
Do) = = L) eh)
n=1
, Amex
=30 ycor 2+ £ LBN(0)sin(A-1)e
- o
n=2
(7
‘ b) Steady state flow conditions
The unknown chordwise mode shapes are selected to conform
to the observed pressure distribution on the NACA foil sections.
i) The NACA-2 mean line at the design condition
' The section has a constant loading distribution from
% = 0 at the leading edge to % = a (a varying from O to 1; x = location
of points along the chord and ¢ = chord length) and then decreases
linearly to zero at % = 1, the trailing edge. This type is designated
' as "roof-top" loading and the distribution is given by
L(p)(o’]) O<x%a
L()p,0.) = LOp)e(1) - (8)
W) (O X 5<, 2,
1-a
9
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with the corresponding A(l)(z) given in Appendix A.

ii) For any other sections such as NACA mean lines of the
k- and 5-digit wing series, including the lenticular mean line, and

arbitrary mean lines in general the distribution is

nmax

o6 =5 = o) o)
n=
'r-\max -
=<% L(o’l)(p)cot %g + _Z; L(o’n)(p)sin(ﬁ-l)eaf (9)

iii) Off-design flow condition

If the solution of the integral equation at the design
flow condition is known, (Jd = advance ratio at the design condition)
then the off-design condition can be obtained through the input arrange-
ment. |In the steady state flow conditions at off-design advance ratio
Jod’ the propeller is subjected to a change in angle of attack due to
AJ = J 4 - J4 The additional loading due to this additional change
of angle of attack will be obtained by utilizing as chordwise loading

distribution the first term of the Birnbaum distribution, i.e.,

e
13,00 = 3 10°) (p) cot 2 (10)

If, however, the information on the design flow condition is
not available then the general form of the Birnbaum distribution

should be used for the chordwise loading distribution

L(°)(o,ea) =% L(o")(p) cot ;9’ + ; L(°’E)(p)sin(ﬁ-|)eu$
n=1

(n)

10

¢ e e car o cee - -— - - . P C - _ . "
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3) Perturbation Velocity Distributions

The left-hand side of the integral equation represents the normal
component of the velocity perturbations from the basic flow due to non-
uniformity of the flow (wake), to blade camber, non-planar blade thickness
and the incident flow angle in the design conditions, and to an addi-
tional flow angle in the off-design condition arising from the difference

between off-design and design advance ratios.
a) Normal velocity due to wake

The normal component of the wake velocity along the middle

chord of each radial strip is given by (cf Reference 2 )
For q = 0

v (r) v () v (r)
—(._-)- ——(—-)-cose(r)-—-(—r-)-slnep(r)

where
v (r) v (r)
'TT '_("7 T
vy(r)
RGN measured axial velocity normalized with respect
A to the speed of advance
v(r)
T . s . X
MG measured tangential velocity normalized with respect
A to the speed of advance
= tan.l P(r)

ep = blade pitch angle T

For a single screw ship Vgo) = 0 and taking v( r) = U (r) then

Vgo)(r) -0

u,(r)
Thus there is no wake distribution in the steady state case when the

reference surface is selected on the basis of the velocity of advance.
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For q # O

The input to the program is

vl _
N _ _ _—
<GXF7) = aq(r) cosep(r) Aq(r) sin p(r)
R
@)
N .
=b -8B 0 12
(GXFT) q(r) cosep(r) q(r) sin p(r) (12)
|
where R and | represent the real and imaginary parts. The coeffi-

cients a, b, A and B are obtained from the harmonic analysis of the
wake survey:

_(_,Vx(r) 2[() ® + b (r) singe ]
= a (r) cos + r) sin
TANEEES ) q ’
NI

;;(?) = qE'[Aq(r) cosq® + Bq(r) sinq® ]

The same sign convention as in Reference 2 has been utilized. The
positive @ is defined in the counterclockwise direction from € = O
at the upright position of the blade. The axial component Vx is
positive downstream and tangential component VT is positive in the

counterclockwise direction looking upstream.
b) Normal velocity due to blade camber

The velocity Vc normal to the blade in the negative direction

induced by the flow disturbance caused by blade camber is given by

woltry VSR of (r,3)
A B O 35

. 2vﬁ¥é:(f);2 afc(r,ma) (13)

c(r)sinwa awa

12

o g e o w —_— = e . o —— .-

———— e xa
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where

ch(r,s)
————— = slope of the camber line fc(r,s) measured from the

°s face pitch line

s = 3(1-cos®y) chordwise location non-dimensionalized on the
basis of ¢(r)

chord in feet

Qr/UA(r)

c(r)
ay(r)

f

On applying the lift-operator to the above expression, then

=(0) ey T
Ve () 2J1+aA(r)r _ of, dg,
NG Hm 55, T, ()

where & (m) = 1ift operator defined in Appendix A.

The integration is done as in Reference 4. In the small range
near the leading edge O < wa,scos-‘(0.9) or 0= s <0.05 the camber-
line is assumed to be parabolic and in the range cos-l(-.8) - @O,S ™
or 0.90 = s < 1.0 near the trailing edge, the camberline is assumed
to be straight line. The integration is done analytically in these

regions and numerically over the remainder of the chord.
c) Normal velocity due to "non-planar" blade thickness

The thickness of propeller blades describing a helicoidal
surface or non-planar surface generates a velocity field on the blade
itself and consequently, affects the loading distribution in the

steady state.

Resorting to the "thin body" approximation, the velocity potential

°7 due to the blade thickness of an N-blade propeller is given by

" 1 ;‘, M( €50, eo) */l‘*ai(p)s—én q
A0r9g) = g g [—= ST P9, (15)
0
13
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where

___E______afT(D,s)
M(E,p’eo) =2UA(p) «/“’aA(p)‘)Z s

3¢,(£,0,0,)

=2U,(p)
A oe

fT(g,p,eo) = thickness distribution over one side of the blade

section at radial position p in the propeller plane.
1
- _p\2 2 2 _ en 43 V12
R=[(x-E)2+ r2 + p 2rp cos( 8 ¢o+en)]
5 ~2mnl) oL N

n N

eo,cpo = angular position of the loading and control points,

respectively, from the reference line (see Figure 1)

The corresponding normal velocity component is given by

VT(O)(F) o -afi(x: r;‘?o) (16)
NGRS

The application of the 1ift operator after the use of the

transformations

®
[} r r
X = szr?) = (o - 8, coswa)/aA(r) O=<g¢,= m

_ _ P _ 4P
£ = ;;rs’ = (o Gb cosea)/aA(p) 0= Ga <

and the expansion of 1/R in a series yields (see Appendix B)
(o)
v ) (r)

Nr 2 2
7t - T up(p)/1+a2(p)p
UA(r WEUA(rL/I+aZ(r)r2 P A

* N o i | (oo (1) o/
.{gaA(r)ulo(up)Ko(ur)le.Parti|(m)\-ueb/aA(r))A(ueg/aA(p»e'u ap(r)-c"/a,
+Z=3' £ Vo (uPdK g (ur) [a(u, ) + 6(u,~4£) Jdu (17)
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where

G(u,l):[aA(r)u+ fgjlm.PartEI(m)((aA(r)EN-u)Gé/aA(r)>A<<u-aA(p)ZN)Gﬁ/aA(p)>

. e"iﬁN(crucp)‘eiu(cr/aA(r)”cp/aA(p))]

and

afT ixcosqu

30, © 4y

o

A(x) =

Oe— o

which can be evaluated once the thickness distribution f(T) is supplied.

For any propeller the blade semi-thickness distribution in the
projected plane can be approximated by (see Reference 2)

— 8 t (p) L
fr(p,8,) = 208 {V2o () sin 22 + ~7 L2o(P) + I 2(p)cos neg] } (18)

where f_ and p are fractions of propeller radius r

T o

ratio of leading edge radius to chord length C(p)

Po(P)
at given radjal position

ratio of maximum thickness to chord at that radial

t/C
position
The coefficients ao(p) and an(p) are determined from the equivalent
fourth order polynomial in x by the "least sauares” method as shown

in Reference 2 .
d) Normal velocity due to flow angle.

The incident flow angle has been defined as the difference

between the geometric pitch angle 6 (r) = tan-l g&:) and the hydro=-
1\

dynamic pitch angle B(r) = tan”! O of the reference helicoidal

surface. The normal velocity due to this effect is then given by

15
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v$°)(r) - \ -1
-U—A?:— = = »\/ 1 + aA (I’)l’ \ep(r)-tan W/

which after the application of the lift operator becomes

(19)
for m > 2

Ao = -1+ ad(r 2 (e - tan_] ! for m=lor 2
V(O,m) A p aAirir

f
UAZr) o

since 1(1)(0) = l(g)(O) =1 and |(ﬁ)(0) =0 for m> 2.

At off-design advance ratio Jod? the propeller is subjected to

a change in angle of attack due to AJ = J° - J,. The normal velocity

d d
perturbation due to this change in angle of attack is given by

A\_I(O’EI) f i 1
f _ _ ) = _ -
- (T a0 - e o |

Uod(r)

— T a0 uy(r)
+a 1+ ai(r)r Lap(r) - tan a7 - Uod(r) ; (20)

for m=1 and 2.

Uod(r) local speed of advance in off-design condition

uy (r)

1

local speed of advance at design condition

The values of Uod(r) and the corresponding aod(r) are deter-
mined based on the assumption that the propeller operates in all
conditions, design and off design, in the same disturbed fluid field
responding with different propeller performance characteristics. The
change of value of advance ratio at off-design condition is assumed
due to change of speed of advance at constant RPM according to

Lu (7)1, ) (0(N] 4 Iog

= = emtm—

[UA(r)]d [UA(r)]d Iq

16
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from which

J
[0,(N gy = J:d LUy (1), (21)

where UA(r) and UA(r) are the local speed of advance and ijts
volumetric mean value, respectively. Then by making use cf the

definition of the advance ratio

Qro ) Qro Jd

a(r) =
od [UA(r)]od [UA(r)]d Jod

the advance ratio at off-design condition is given by

4
a(;) = agr) T (22)

The normal velocity due to change of angle of attack at off-design
condition (AJ = Jod - Jd) can now be determined. Then the additional

blade loading AL(:) is calculated through the integral equation (5).
o

k. Blade Pressure Distribution

The integral equation (5) can be solved successively by imposing
boundary conditions given in Section 3 of the Analysis. Then the span-

wise loading distribution is determined by

LDy = [ () sind_do_

o -
hat nmakx

=f = L(q’n)(r) &(n) sind do (23)
o h=l

For the unsteady loading due to wake (q # o), the complete

Birnbaum series is used for the chordwise loading distribution. Thus

L(q’])(r)(l+coseq) + ngax L(q’ﬁ)(r)sin(ﬁ-])ea

n=2

sing, Jagg = L@ Dy + 1L LB)) (o)

it
L(q)(r) - % j
[o]

L
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For the steady state loading due to AJ in the off-design condition
the spanwise distribution is obtained by the first term of Eq. 24.

ln the case of NACA-a mean line blade sections, with "roof-top"

blade loading distribution:

(0,1) -1 -
L () 08 <cos (1 -2a)
L(o)(r) = I «
+cos§
L<O’])(r) -2 cos"(l-eé) < 6, =T
2(1-a)

The spanwise loading is given by
m

1 J‘ ( . 1
1+cos® _)sind_de_:
2(‘_5) \ [+ o .

A
L(o)(r) = L(O’])(r){ J sinp d8, +
°

- 10Dy 341y (25)
where
A= cos-l(l - 2a)

For any other arbitrary mean line, the spanwise loading distri-

bution is derived from Equation (24) for q =0

m nmox
Loy =L g {L(O’l)(r)(l+cosea)4- 2 oM (r)sin(a-1)e, sing, Jds,
° n=2
= 0Dy 41 (02 (26)

Whenever the cotangent Birnbaum mode is used, the Van Dyke or
Lighthill correction is applied to the chordwise pressure distribution

to remove the physically unrealizable leading edge singularity.

Their simple rule for obtaining a uniformly valid solution is

S
C (27)
P S+ p/2 P

o
"
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where
Cp = pressure coefficient according to first-order thin
airfoil theory
S = chordwise location from the leading edge in fraction of
t chord length
o = leading edge radius of the profile in fraction of chord

length

The modified chordwise loading distribution is then

1-cos® 0 a
L(Q)(r,ea) _ % QTIE;?EBE%;>{L(Q’l)(r)COt o Bisz(q’n)(r) sin(a-l)ed}

(28)

Since the pressure near the leading edge is governed by the
first term, the location of the maximum pressure near the leading edge

is determined by

which yields

] =
cos b,

This is the choruwise location of a point where the maximum pressure
near the leading edge will occur after the application of the leading
edge correction, provided P < .015, otherwise the sine series will

influence the location of maximum pressure near the leading edge.
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I TERATIVE PROCEDURE

As was noted earlier, a propeller operating behind a hull is subjected
to the effect of a hull wake of varying intensity (weak to strong) and it is
also influenced by its self-induction. The former can be taken into account
by a harmonic analysis of the wake, as has been done before; the latter, self-
induction, however, depends on a priori knowledge of the propeller loading

which requires that the reference surface be established in advance.

The harmonic content of the wake based on the local speed of advance
is used as the inflow to the propeller. The wake intensities may be quite
strong and even of the same order of magnitude as the free stream velocity
(ship speed). These velocities cannot be considered as perturbations and,
thus, a strictly linearized theory is no longer valid. Second-order terms
cannot be ignored as small quantities. However, second order theory (nonlinear
theory) cannot be easily developed so as to lead to a manageable numerical ap-
proach, An iterative procedure is established based on a combination of the
nontinear form of the Bernoulli equation with a kinematic boundary condition
existing at the designed operational condition for the selection of the refer-
ence helicoidal surface around which a perturbation theory will be developed.
A flow field closer to the propeller operating condition is achieved and thus
the requirement of the small perturbation quantities will be reinforced. This
approach is applicable to moderately to heavily loaded propellers immersed

in a strong wake.

1) The Bernoulli Equation
For a moderately loaded propeiler operating in a steady inflow field
whose velocity components in the axial, tangential and radial directions are

given by
é@o | BQO a@o
UA(F)+? s l"&2+VT--r-~°-(p— , W +r

respectively, the Bernoulli equation for a point (x,r,¢) in the field becomes

Po (@) |- % .2 o¢_ 2
P +7L (U + '_') (ru+v -1 5"') \w T ) ]
Py

2
- 5 +— LU +\nz+ Vy) J (29)
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where
Po is the mean local pressure
UA = local speed of advance
?o = the flow velocity potential function
and VT and W, = mean wake velocity in the tangential and radial directions,

respectively.
The rest of the symbols are as defined previously.

It is assumed that for mean ship wake flow

VT =0 (a Iways true for a single screw)
and WR =0 and 3——- = 0 (no radial variation is taken into account)
and reference pressure pgp = 0.

Thus, Eq.(29) yields

3 -
U o _( —} _'.a@° ’/liéﬁ'zj=_&( r,)
L A 3_— ) fLra s r 9y ) or X @
which includes the second order terms, or
- 3¢ - o¢ 3% p
/" 07 "o _ /1 "oyl o__To
R IR Lol e B 5, (o) (30)

For a coordinate system fixed in space and for a right-handed propeller rotating
with angular velocity Q,

@ = -Qt ,

Thus, the above equation becomes

L LR 128 -1 0%,
La * §<5;—7J ox rQ N _\r o % /. TD \5-—)- - > (x r3) (31)
Letting
ae_
Alx,r9) = Uy + 5 5=
) 8 (32)
B(x,r,¢) = 1 r - gl 0)_
»n rQ L 2\t 09 / J

21

B eyt oy mer o cme -




R-2063

Eq.(31) is written as

B@o a@o P,
Age *Bap © g, (emt) = vlart) (33)
where
P, (x,r;t)
Y(x,r;t) = - 2 = acceleration potential function.

P

The formal solution of the differential Eq.(33) is obtained by the method

of characteristics provided the coefficients A and B are known constants.

This present scheme is also used as a means to introduce the propeller
induction. Identifying the propeller-induced velocity in the axial and

tangential directions by
9¢
0

3x

ui(x,r;t)
and
ad
i o

Cm = vi(x,r;t)

r oy

respectively, the coefficients of differential equation (33) become:

Alx,rit) =U, +

) (34)
B(x,r;t) = -:_?2 LrQ+ -%- vi]

These induced velocities can now be approximately evaluated by taking one-
half of the corresponding values at infinity (well-known results from the
momentum theory). The steady induced velocities in the far field can easily
be calculated once the propeller loading is known. |In fact, in Reference 7

it is shown that the steady axial velocity at x~« in uniform flow is given by

N max FA(FI)O L(O,ﬁ)
u, = T P ©) (r)

(35)

n=1 r

where all the symbols are as previously defined and linear dimensions are non-

dimensionalized with respect to propeller radius.

It can be further shown7 that the steady tangential velocity in the far

22
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field can be expressed in terms of the axial induced velocity by
v.(x,r;t) = - L (x,r;t)
irt e ar i+’

thus the coefficients (Eq.34) become:

1
u, + 7 ui(x,r,t)

A(x,r;t) A

36
B( it) = ! ‘_rQ - li‘&.:_’_t_)_] e

X T Fao) L 2 ar
which incorporate the propeller speed of advance and the propeller induction,

both of which are considered to vary radially.

As will be seen later, once the potential function @o(x,r;t) is
determined at a stage of the development, the blade loadings can be evaluated

and hence the propeller induction effects as well as any other flow charac-
teristics can be calculated. The coefficientsgiven by Eq.(36) are considered
to be known at that stage, and hence the differential equation
890 aéo
Alx,T3t) 5= + B(x,r;t) ST = Hx,rit) 3N
(see Eq.33) can now be solved by the method of characteristics provided that

A and B are determined at x=0 (at the propeller plane),i.e.,they are speci-
fiable constants., The characteristics are deduced from

de _ dt
A B

which, upon integration, yields
Bx - At = constant
Letting

g
n

Bx - At
(38)

"
x

then

Multiplying the above relations by A and B, respectively, and substituting

23
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the results into Eq.(37) yields
ot

A gn—° = y(1,r; ,—:— (BY-§) J

which upon integration becomes
17 1
e (xrst) = ¢ EQW[T,r; Z(87 - g) ldt

Making use of the relations given by Eq.(38), the above solution can be
written as
13 B
@o(x,r;t) Y _£ ylr,r;t - Y (x=7) 1d7 (39)
This is of the same structure as the existing relation between the velocity
and acceleration potentials for the case of a lightly loaded propeller, which

was the subject of the previous study.2

The above relation indicates that the solution Qo(x,r;t) for the
velocity potential is obtained through the so-called '"History Integral!
of the corresponding acceleration potential where the time is shifted by the

amount % (x-T) . Thus, the term involving the 'time element! becomes

. u;(x,r;t)

, £ rQ-g ——————
QLt - %(x-'l”)] =Qt - 22 7 27 (x-1) (L)
rLUA+§ ui(x,r;t)]

where all the linear quantities are expressed in a non-dimensional form in
terms of the propeller radius o - Thus, the "inverse advance ratio'
arﬂ=%f which was introduced in the study of the lightly loaded prope]ler2
is defined in the present study by

u.
ﬁlror - %‘ 3‘#

ar = 7 {41)
UA+E Ui

which will be called an '"effective inverse advance ratio'

tt is shown, therefore, that the present problem with propeller
exposed to the advance speed and influenced by its seif-induction admits of
the same formal solution as in reference 2. The same mechanics can be
utilized as before, provided the coefficients of the differential Eq.(33)

are known, This can be achieved by introducing an iterative procedure.

24
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2) lterations

At first it is assumed that the induction effects are omitted (i.e.,

ugl)=0 . v§1)=0), so that the coefficients A{x,r;t) and B(x,r;t) become
A (0,750) = u,(0)
(1 =

both known quantities, in which case the solution yields

1

Upg -

Q(])(x,r;t) = w(‘) (T,r;t - 5ﬁlydT

8&—x

which is identical to that of a '""lightly loaded" propeHer2 except that the
present solution incorporates a radial variation in the inflow field. The
variation does not introduce any additional complication since the problem

is solved by dividing the lifting surface into radial strips with specified

inflow field at each radius.

Knowing the velocity potential Q(I)(x,r;t) and the ''effective in-

verse advance ratio" a(‘)= %— = %ED (n = the propeller RPS, and a(])= a),
e A A e
through the existing'machinery!(analysis and program) the steady state blade

loading Lg?jﬁ)

(r) is determined (subscript refers to the order of
iteration). Then the induction effects ugz)(o,r;t) are calculated through
Eq.(35). A new set of coefficients A(Z)(O,r;t) and B(Z)(O,r;t) are determined

through Eq.( 36).

With these new coefficients, a new solution @éz)(x,r;t) is established:

Xy (2)
) torit) =gy [ O(nnt - By ey o

With "effective inverse advance ratio"

L2
| i
ﬁlfor--z-—m—
22, = ae_’*
e v+ 4 (2
ATZY
0,n
the new loading Liz)n)(r) and inductions u§3) are calculated, and thus

25
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establish the new coefficients A(3)(0,r;t) and 8(3)(0,r;t). At that

stage the new iteration begins.

The results of the jth iteration are presented in the following

table: .
, Ry
. (J) _ 1.0 (). L !
Coefficients A =U 7Y B Q'br 2 a(j-lj?’ Qror
e
(J) (i)
o (1) 1 U
HEffective 1 G-l ag r ~ T
verse a(j)= er° 5 3 r ) e zae(IEI)r Ua
advance e I (Jf] B
coefficient" rLUA + Z Y u}J)
rjy +
ZUA
(j)

1}

. a, . 1% ) .. B I
Sol;fé?n of o (x,r;t) ;TTT -£ § [T,r,t - ;777-(X-T)JdT

(0,n)

AT OV

Steady-~ (j) _ -
tnduction Y —Zﬂ%U%

max
2
n=1 r

This iterative procedure will continue until the potential function Q(J)(x,r;t)
or, more conveniently, the "effective inverse advance coefficient' agj) , does
not vary in two consecutive iterations. With the final value of aéj), the
reference helicoidal surface is established and this will be used as the basic
information for the calculations of the steady and unsteady blade loading and

hydrodynamic forces and moments.

It is clear that the number of required iterations depend to a
great extent on how close the initial value of the "effective inverse advance

coefﬁcient"aél) is to its final value. A simplified procedure is given below.

It is known that the pitch of a well designed 'wake-adapted propeller"

nearly satisfies the following "kinematic condition!

26
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(=
+
[

[}

(Qr + vi)tanep

Or - =1y tans
(2r - ;F)tan 0
from which the axial induction is

ar .
u, = Qr tanep - UA) m; (L42)

where ep is the propeller pitch angle.
From Eq.(41) the axial induction is determined as

ar

u, = 2(rQ - arlp) ————
! ( A) 1+ 3%

(43)

which is considered to be the result of the ''dynamic condition' since

Eq.(41) is derived from the Bernoulli equation.

Combining the 'kinematic'' (Eq.42) and ''dynamic' (Eq.43) conditions,
yields

E a°r®- 2D ar ~ E = 0 (k)
whose solution leads to

Nrepe)
ar = D + ED +E (45)

where

o
[

ir -
ir UA tanep

Qr tan8_ + U
P

m
1

A

With the initial value of a, obtained from Eq.(45), the iterative procedure,
described above, starts. It is seen from the numerical calculations that

this approach has reduced the number of iterations considerably,by 50 percent,

Once the reference helicoidal surface is established and the ''effective
inverse advance coefficient" 3, is determined, the numerical procedure
becomes identical to that developed previously in Reference 2 for the steady

and unsteady flow conditions,

27




R-2063

PRESSURES, HYDRODYNAMIC FORCES AND MOMENTS,
AND BLADE BENDING MOMENTS

1) Blade Pressure Distribution on Each Blade Face

in the preceding sections the pressure difference Ap(q)(r), at a given
radial position r and frequency q, between back (suction) and front (pres-
sure) faces of the blade surface is determined. 0On the suction side of the

pressure due to loading is +Ap(q)(r)/2; on the pressure side it is -Ap(q%rﬁ/z.

In addition, a non-lifting pressure PT is generated due to the sym-
metrical "flow distortion!' thickness effect which will be present only in the
steady state since the blade is considered to be rigid. Pr is derived in

Appendix C by means of the "thin body' approximation (see Reference 8).

The instantaneous pressure is the sum of the blade pressures due to all
frequencies contributing significantly. On the pressure or suction face,
when the blade swings around its shaft in the clockwise direction from its up-

right position {12M), it is

= (a) -ia® _ s 1,(q) -
Pp,s(r) = Re q§° Pp?s(r) e ' 2 qz=/o lec"s(r)‘Cos(qO—cpq) (L46) ,
where
Pq = phase angle = tan~! —-%é?.lﬂl__
(Pp,s)Re

(the subscripts Re and Im indicate the real and imaginary parts) and @

is blade angular position, positive in the counterclockwise direction

as is .
Qpq

2) Propelier-Generated Forces and Moments

The principal components of the hydrodynamic forces and moments are
shown in Figure 2 with the sign convention adopted. The total forces at fre-
gquency IN(£=0,1,2,...) induced by an N-bladed propeller are determined as

(see Reference 2):
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-
il

. 1
Re {Nro eIXNQt f L(RN)(r)COSGp(r)dr}
o

M o oy - . - -
te 52 TR LT ) ) (gt 4 L0 (), ) oy

n=l

-
n

sinB {r)d
1 p (r) r}

-Nr . 1 - ~ - -
F=fe {_?i_o_ LENat ] ) [L(lN"'”)(r)A(")(—sg)— L(2,N+l,n)(r)A(n)(8;)]
° n=l
sinap(r)dr} (L73a)

The moments are determined by:

1
. 2 _iaNQt (aN) .
Q, Re {Nr? e ft (r)Sjnsp(r)rdr}

o
Nr2 ] - - - -
y==Re {~—;~9'e”ms.zt f { X [L(EN_"n)(r)A(n)(“eg)-+L(RN+"n)(r)A(n)(eg)]cosfér)
° n=1

+ 7 [L(QN“.E)(r)Afﬁ)(_e;)_éQN*‘vB)(r)Afa)(e;)](ie;)sinap(r)tanep(r)}rdr}

n=1
-Ne? I - -~ - -
q zRe{__Z;Q REE ) [ (=1, Ly () (-67) - L(EN,0) Ly () (6;)]cosep(r)
o -

n=1

v 3O a® onpa D (Do 19]) sind (e eans ()1

n=]
G ") (h7e)
where A n)(z) and Aln (z) are as defined in Appendix A,
It is scen from Eqs. (L47a,b) that the transverse bearing forces -
and bending moments are evaluated from propeller loading components L(q’n)(r)

associated with wake harnonics at frequencies adjacent to blade frequency,

. + .
i.e. at q=1N -1, whereas the thrust and torque are determined from the
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loading L(q)(r) at blade frequency q=iN . At £=0 (steady-state), the
mean transverse forces and tending moments are determined at shaft fre-

quency. Thus:

‘ - -
P = re (o0 J1 T LT a6 sine ()ar)
’ © n=1
] - -
?z== Re {E:?-f[ ) L(]’n)(r)A(n)(e;)]sinep(r)dr}
°© A=t
Nr 2 = =
4, = Re {52 {1 ] L () ey coso () -
° A=l
) L(]’a)(r)Afa)(eg)](ieg)sinep(r):anep(r)}rdr}
n=1
NR 21 - -
3, - re (52 [ (0D LT (6l) coss (1) -
° =l :
[y L(‘.B)(r)hfa)(sg)](ie;)sinep(r)tanep(r))rdr} (L47¢)
n=1

AlY forces and moments can be written in the form

i .
Re[C(Q)e q ,~1a0y _ C(Q)cos(’qo'*qh) - C(q)cos(qo-$q)

where 0 is blade angular position, rcoiiive <in the cournter-cloclise

direction from zero at the upright position (12M), q is order of shaft

frequency, C(q) is magnitude of force or moment, and wq is phase angle

(clectrical) determined as the angle whose tangent is the imaginary part
(sine part) over the real part (cosine part).

(The progrum output gives
C(Q) and wq.)
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(q)

the upright position, i.e., leads; when ¢q is negative, the peak (or trough)

When Qq is positive, the peak {(or trough) of C is to the left of

is to the right of the upright position and lags that of input.

In Reference 2, as a first attempt at estimating the frictional con-
tribution to thrust Fx and torque Qx’ use was made of the Prandtl-Schlichting
formula for the friction coefficient for one side of a smooth flat plate as
was suggested by Hoerner.9 The present study follows Reference 2 in this
matter with this exception: in the formulas for friction coefficient and
frictional thrust and torque, the inverse advance ratio is no longer
a = (ub/u, based on forward speed of the ship and constant over the propel-
ler span, but aA(r) = Qr/UA(r), based on local speed of advance and varying

with radial position.

3) Blade Bending Moments

The blade bending moment about the face pitch line at any radius rj
of a blade is calculated from the chordwise integrated loading (spanwise

component) L(q)(r) at any shaft frequency q as

. . 1
MéQ)equt = rs e|th j L(q)(r)cos [ep(r)-ep(rj)](r-rj)dr (L48)

r.
J

The positive blade bending moment about the face pitch line is that which

puts the face of the blade in compression,

The instantaneous blade bending moment distribution when the propeller

swings around its shaft in the clockwise direction is
M. = Re 2 M e 198 -y |Mq|c05(q9 - %) (49)
b q b q b q

where Qq is the phase angle (electrical).

it should be noted that in the program the value of i of Eq.(48) is
limited to any of the midpoints of the radial strips into which the blade
span is divided, at which points the pitch angles, as well as other geomet-
rical characteristics, are given as input, The bending moment at any other

radial position can be obtained by interpolation or extrapolation.
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NUMERICAL RESULTS

The theoretical approach developed in the preceding sections for the
evaluation of the blade pressure distributions due to loading and thickness
effects and of the resulting forces and moments has been adapted to a high-

speed digital computer (CDC-6600 or Cyber 176).

The numerical procedure has been applied to propellers of different
loading from light to moderate to heavy:

10,11

a) the DINSRDC Propeller 4118 tested at DTNSRDC in screen wakes

(3-cycle and 4-cycle screens)

b) the Sharp Propeller V-3275 in the wake of ship model 4986 (S.S.
MICHIGAN), the wake survey and propeller geometry supplied by the U.S. Mari-

time Administration

c) the NSMB Propeller 4930 in the wake of ship model 4705, the wake
survey and propeller geometry supplied by Lloyd's Register of Shipping

The particulars are listed in Table 1.

TABLE 1
Propeller Designation DTNSRDC 4118  SHARP V-3275 NSMB 4930
Expanded Area Ratio, EAR 0.60 0.564 0.810
Pitch-Diameter Ratio,
p/D at 0.7 Radius 1.077 1.080 0.757
Skew, deg 0 11.5 30.0
Diameter, D, ft 1.0 22.5 6.837
No. of Blades, N 3 5 5
NACA 3 Meanline Section a=0.8 a=0.4 a=0.7
RPM (= 60n) 900 106 213.6
Advance Ratio, J = U/nD 0.831 0.993 0.746
Free Stream Velocity, U, 12.465 39.50 18.158
ft/sec
Speed of Advance, UA’ at 12.81 33,18 9.02

0.7 Radius,ft/sec
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Relevant geometric characteristics of the 3 propellers, namely, the ratios
of maximum camber to chord length, mx/c, of maximum thickness to chord,
to/c, of leading edge radius to chord, po, of chord/diameter, ¢/D, and of

pitch to diameter, P/D, are given in Tables 2-k,

TABLE 2. DTNSRDC PROPELLER 4118

Radius mx/c to/c Py c/D P/D
0.25 0.0228 0.090 0.00525 0.347 1.0%85
0.35 0.0231 0.068 0.00290 0.386 1.083
0.45 0,0224 0.052 0.00170 0.L25 1.081
0.55 0.0212 0.040 0.00100 0.4L54 1.079
0.65 0.0203 0.031 0.00060 0.L64 L.u??
0.75 0.0198 0.024 0.00035 0.L52 1.076
0.85 0.0189 0.018 0.00025 0.405 1.074
0.95 0.0174 0.016 0.00020 0.278 1.072

TABLE 3: SHARP PROPELLER V-3275

0.25 0.0553 0.232 0.059 0.166 1.000
0.35 0.0445 0.166 0.030 0.200 1.032
0.45 0.0374 0.122 0.016 0.231 1.055
0.55 0.0321 0.09k4 0.0097 0.251 1.083
0.65 0.0268 0.073 0.0059 0.260 1.080
0.75 0.0218 0.056 0.0035 0.257 1.079
0.85 0.0174 0.042 0.0019 0.236 1.073
0.95 0.0138 0.031 0.0011 0.168 1.057
TABLE 4. NSMB PROPELLER 4930
0.232 0.0304 0.168 0.04087 0.234 0.729
0.335 0.0288 0.124 0.02238 0.268  0.750
0.437 0.0279 0.088 0.01210 0.308 0.75h
0.539 0.0258 0.065 0.00680 0.343 0.758
0.642 0.0217 0.043 0.00309  0.364  0.759
0.744  0.0178 0.039 0.00183 0.366 0.754
0.847 0.0138 0.030 0.00162 0.343  0.74}
0.949  0.0101 0.023 0.00175 0.264  0.724
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Mean wake information is presented in Table 5 as the ratio of speed
of advance, UA’ to the free stream velocity, U, at 8 equidistant radial

positions between propeller hub and tip (see Tables 2-4),

TJABLE 5. UA/U - RATIO OF SPEED OF ADVANCE TO FREE STREAM VELOCITY

Propeller DTNSRDC 4118 SHARP Vv-3275 NSMB 4930
Wake Screen Model L4986 Model L4705
U, ft/sec 12.465 39.50 18.158
Radial Position UA/U UA/U UA/U
] 0.970 0.599 0.207
2 0.969 0.678 0.285
3 0.984 0.747 0.354
L 1.009 0.800 0.407
5 1.026 0.829 0.452
6 1.028 0.8uk4 0.527
7 1.026 0.848 0.655
8 1.025 0.852 0.791

DTNSRDC Propeller 4118

Results of calculations of the hydrodynamic forces and moments by
the present approach, as implemented by the PLEXVAN program, are presented
in Table 6 for the 3-bladed propeller 4118. The steady and blade-frequency
K coefficients are compared there with available experimental values,]0 and
with values obtained through the approach of Reference 2 by the PPEXACT

!,

modified code?

*
Since the publication of Reference 2 the numerical procedure of the
PPEXACT program has been modified for greater accuracy of the chordwise
distributions.
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TABLE 6

DTNSRDC PROPELLER 4118
IN 3-CYCLE AND L-CYCLE SCREEN WAKES

CALCULATIONS
PLEXVAN Program PPEXACT Program

Mag. Phase Mag. Phase
deg deg
0.166 180 0.166 180
0.0324 0 0.0323 0
0.0735 - 22.9 0.,0742 - 23.4
0.0126 157.2 0.0127 156.6
0.0175 - 8.3 0.0162 - 8.9
0.0124 - 24,5 0,014 - 25.0
0.0175 - 98.3 0.0162 - 98.9
0.0124 =114,5 0.0114 -115.0

EXPERIMENTAL
Measurements

Mag.

0.154

0.0290

0.0685
0.0102
0.0139
0.0109
0.0131

0.0114

Phase
deg

180

135

Comparisons between the results of the two theoretical approaches for

the chordwise and spanwise distributions of pressure are graphically ex-

hibited in Figures 2 to 4,

it is seen that for this lightly loaded propeller with ¢

T

= 8KT/ﬂJ°I_\

approximately 0.6, there are only slight differences between the present

approach and that of Reference 2, as was expected.
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Sharp Propeller v-3275

Similar calculations have been performed for the Sharp 5-bladed pro-
peller V-3275. The results are shown in Table 7 and graphically in Figures
5-8. Also tabulated are some results obtained from Troost B-5 propeller

charts,

TABLE 7. SHARP PROPELLER V-3275 IN THE WAKE OF THE S.S. MICHIGAN

CALCULATIONS

PLEXVAN Program PPEXACT Program TROOST B-5 Prop.
Coefficient Mag. Phase Mag. Phase Mag.
deg deg
Mean
RT 0.222 180 0.226 180 0.185
EQ 0.0400 0 0.0408 0 0.0325
Ke 0.0159 180 0.0171 180
y
K 0.0111 180 0.0118 180
KQy
Ke 0.0144 0 0.0159 0
z
K 0.00983 0 0.010 0
Ky, 9 3
Blade
F requency
Kr 0.00635 177.8 0.00638 166.9
Ky 0.00108 - 2.1 0.00106 - 12.9
RFY 0.01265  -140.8 0.01171  -143.1
RQY 0.00842  -153.1  0.00777  -152.5
RFz 0.00442 - 75.2 0.00437 - 76.1
Kq 0.00274 - 74.7  0.00272 - 73.2

z
“at Jp = Up/nD at 0.7 radius

In this case, ¢ = 8 RT/nJA2 is approximately 0.8, It is seen that
the hydrodynamic force and moment results of the present analytical approach
differ slightly from those of the PPEXACT modified program. The blade pres-
sure distribution of Figures 7 and 8 show larger differences between the

two methods,
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NSMB Propeller 4930

A comparison of results of the PPEXACT and PLEXVAN programs for this
5-bladed propeller is presented in Table 8 and Figures 9 to 11, The compu-
tations were performed for the steady-state case, q=0, only, since just the

mean wake velocity was supplied.

Both Davidson Laboratory sets of calculations were compared with the
results of the NSMB lifting-surface program which were provided in the
form of graphs of spanwise load distribution and chordwise pressure distri-
bution. The values of mean thrust, RT’ and torque, RQ’ coefficients shown

in Table 8 for the NSMB program are derived from the spanwise loads.

This propeller with a CTQA* is more heavily loaded than the other two
propeliers and the results show larger differences when the two theoretical

approaches are compared.

TABLE 8. NSMB PROPELLER 4930 IN THE WAKE OF MODEL 4705

CALCULATIONS TROOST
PLEXVAN ‘ PPEXACT NSMB  B-5 PROP™
Mean Coefficient
RT -0.202 -0.216 -0.227 -0.20
RQ 0.0272 0.0294 0.0305 0.026

at J, = UA/nD at 0,7 radius.
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CONCLUS I0NS

A theory and corresponding computer program have been developed for
a marine propeller operating in non-uniform inflow by taking into account

the radially varying mean wake and mean propeller induction,

The helicoidal reference surface of radially varying pitch is
established through an iterative procedure by combining the non-iinear
form of the Bernoulli equation with an appropriate kinematic condition ex-

isting at the design stage.

The numerical procedure furnishes information on the blade pressure
distribution, as well as the resulting hydrodynamic forces and moments in
the steady and unsteady flow conditions. The approach is valid for mod-

erately to heavily loaded propellers,

It is seen from this small number of calculations for propellers
with thrust coefficient CT varying between 0.6 and 4,0 that the dif-
ferences between steady and unsteady forces and moments calculated by the
present theory (coded as PLEXVAN) and the corresponding values determined
by the previous approach (coded as PPEXACT) are larger as CT increases.
However, the differences between the results of both procedures are minor

even for the propeller operating under more heavily loaded conditions,

The PPEXACT method assumes the reference surface (along which the
shed vorticity is considercd to be convected) to be a pure helicoid
whose local pitch is fixed by the joint action of the forward ship speed
and the blade tangential velocity at any radius. The difference between
the ship speed and the radially varying wake speed is taken as a pertur-
bation from this surface. On the other hand, in the present (PLEXVAN)
method to begin with the reference surface (based on the non-linear
form of the Bernoulli equation) takes into account the radially varying

mean wake and mean propeller induction.

It would appear that the two methods yield comparable results pro-
vided that the prescribed procedures are closely adhered to (e.g., in the
PPEXACT method the hydrodynamic pitch tan-l(U/rQ) must use U =ship speed).
The advantage of the PPEXACT program lies in its considerable saving of

computer time,
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|f, however, greater accuracy in the evaluation of hydrodynamic
forces and moments is required and more precise blade pressure is needed,

then the program PLEXVAN must be exercised.

In the analysis performed in Reference 12 to evaluate the sensitivity
of various wake parameters, the hydrodynamic pitch angle B was found
to be the most critical one. A set of calculations for propellers with
36° skewness indicates that a decrease in B of IOo results in a decre-
ment of approximately 187 in Ky (see Figure 11 of Reference 12). 0n the
other hand, the present calculations for the NSMB 4930 propeller with 30°
skew indicate that with a decrease in B of h.SO, there is a decrement
of approximately 7% in KT' The trend is shown in both cases to be about
the same. For a final assessment, more systematic calculations must be

performed and compared with corresponding measurements.
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APPENDIX A

Evaluation of the %" and 60- Integrals of the Integral Equation (6)

@) Lo i
DY) =5 [ oeme YOS gg
o

My =L ¢ - iycosd 4 . :

I (y) = o j (1-cosyp) e do = Jo(y) - lJ](Y)
o

(2) Lo i

| (y) = L I (142c0s5) o 1yCOS® dop = Jo(y) + iZJI(y)
o

- n - -

l(m>2)(y) - % I cos(&-l)¢ o ycos® do = im-l ()

[ m-l

where Jn(y) is the Bessel function of the first kind of order n and

argunent vy

(ﬁ) T _ -izcos®
2) AV (2) = [ e() e sine do
o
a) Birnbaum distribution
m
(1) 1 8 -izcosg ., _ .
A (z2) = o J cot 5 e sing do = Jo(z) IJl(Z)

(n>1) _1 "o - . -izcos®
A (z) = = I sin{n-1)8 sing e de
o

- Mg—n—z . @ +s@]
n-2 n

b) '"Roof-top' distribution (a mean |ines)

<] -
A(])(z) - Icos (1-2a) e-izcose

sing de
o
m .
+ j §l+co§9) e-uzcose sing do
- _ o 2(1-a)
cos (1-2a)

- e-iz{.% + EYT%ETEE [FIZQZ - eiZZ] }

A(7>0z =
(for a=t, 4N (2) = 22002 | ang for z=0, 1(1(0)=143.)
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Functions Required for Evaluating the Integrand of the Kernel Function

at the Singularity (see Reference 2) and the Propeller-generated
Moments (see text)

U .
N 'l(m) (y) = % J @) 7% cosy dop
o]

WV == 20 - 9,00] + 19,

10 = (3,00 - 9,0] + 1, )

.m-2

Py = = [0 + o 0]
m n-

-izcosB

m AL
2) A (z) = ‘f €(n) sinb cosB e de
o

a) Birnbaun distribution
Af')(z) = % [Jo(z) - Jz(z)] - iJl(z)

_ an+l
NC2IPS 0T [JE_B(Z) - J5+](z)]

b) "Roof-top distribution {3 mean lines)

Al“)(z) - e‘iz i +’L (1-2a - i) 1252

z z® 22(1 a) 2 z

e (e 5)e)

(For a =1, Agl)(z) = 12-2- (cos z - 5'“ L 2) )

It is to be noted that the values for necgative arqunent, i.e.,
(m) (-y), ! (m)( -y), l‘\(n)( z) and A(n)( z), are the conjugates of the

values given cbove.

A2




R-2063

APPENDIX B

Normal Velocity Due to ''Nonplanar'' Blade Thickness

The following substitutions are made in Equations (15) and (16) of the

text

b
011 (8,0,8)  3,(p) 3 (5,8)

of egsinea aed

ds = 6Psino_do
[e] [ 2e'S

im(6_-¢ 46 ) =
M6 %™n j (1K), e

-0

iu(x-§)du

)=

)
2 e
M=~

| =

where
|m(|u|p)Km(|u|r) for p<r

(1K), = {
1 (ul )k (Ju]e) for r<op
1 o

o r )
S <3A(r) e To)
4I+af\(r)r2

N f =N, £ =0,%1, £2, ...
or m=:N ! , Equation (16)

0 otherwise

N imjd
Since L e n={
n=1

becomes

(0)
Of . im(8 -% )

VT (r) iNl" TT
NG 2t ENOUEADI el
A ZHEUA(r)VHaz(r)r2 TN OF «

. ?(aA(r)u + ?EJ(IK)mei(x-g)ududpdea (8-1)

With the trigonometric transformations for x, Py €, and Go given in

the text, the series is brought to
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i m of . r_p
T | [ u@/ e gt e
m=in © P
® . iu(cr/a (r)-cp/a (p)) i(u-a (p)m)@pcose /a. (p)
-J'<aA(r)u + mg-/\’(IK)me A A e A b o A
-0 r
. e-i(u-aA(r)m) egcos%/a"(r)dudpdea (B-2)
Let
m 3, i((u-a,(p)m)6F/a, (p))cosb
A((u-a, (p)m) 8072, ()= | 55~ e A b""A %o,
fo] o

and applying the generalized 1ift operator (see Appendix A)

(o)
Ve (r) iNr
= J U (pWTaE (p) 6°
Ualr) 2n2UA(r)VI+aZ(r)r2 o A A

@ : oy ® iu(c"/a, (r)-0"/a, (p))
- 2 e-:EN(cr-c ) J (aA(r)u + fg>(lK)£Ne ) At A

f=— —c0

- A((u-a, (0 )68 73, (01 1™ (2, (1) =) /2, (1) Joude  (8-3)

It can readily be seen that folding the doubly infinite L-series and
u-integration yields Equation (17) of the text.
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APPENDIX C

Thickness Effects (Non-lifting)

The velocity potential due to source-sink distributions approximating

the symmetrical thickness distribution of an N-bladed propeller is given by

N
3(x,r,9,;0) = - %ﬁ ;Z] ff 'if_ﬁl'ds
N SEE
- EEI g [ e 4) ]+2Zéiép p6fsing do _dp  (C-1)

where the source strength is

(p,s) = 2u, (PYV 142" (p) p° -—-7;;-" 2u, (p) ~ 3% >

the Descartes distance R s
‘ix-g‘z + 7+ p2 - 2rp cos/e - +8 )W
L\ 3/ \"o Po*"n/
s is measured along the chord of the blade section and the other symbols

are as defined in the text.

From Bernoulli's equation, the linearized pressure PT is

¢ 0% -
Pr(x,r90) = =pU, (r) (5% + a(r) Sy

Hence

(r) N T f(8,0,6,) -

PT(X,F,QO)— 23 f JUA p -_—EYESET__-Ux 4—a(r)°9 /R ap Vi+a (p)p" snn* d¢ dp

(c-2)

If use is made of the expansion

% (8- e i(x-
Re7 2T o, oI e
where
1 (1kIp)K (1K f
(1), = n{IKIR)K, (TKIT) or p=r
]lm(lklr)Km(lklp) for r<p

cl
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then
3 1_i & im(®-
+a(r) —; ==L 2§
\5% (r) 99,/ R TTm=-xe
Since
¢ = S B
£ = eo/a(p) = (o o cosea)/a(p)
£
a‘T(gtpreo) _ ﬂ?) af.r(pvea)
g P 26
eb sing, o
Also
N imd N form= 4N, £=0, =, =2,
e N =
n=1 0 for m # IN

On substituting Eqs.(C-3)

2 o5 %%

2 o M(Com%0) T(k-a(r)m)(IK)mei(x_g)kdkdeadp
m=-o -o

m=AN

With the trigonometric transformations for 90 and %

. r
-imAT |m(8bcos¢ -

iNp U (r) = T 3f (p,8)
- f A T o \[‘"‘5"‘_7?
Prixrgg) = ——— mPim g g" ol UM ORI
m=4N
e of - . e; . 5&
27 Ikka(r) - a(p)) e'lk\a(r;COSya- a(;)

. f \k-a(r)m)(lK)me

The Ga-integral is as before (see £q.17 of text)

c2

T v e e o e e . - - -

e

COsc )

Y f(k-a(r)m)(IK)mei(x_é)kdk

(c-3)

(C-4)

(c-5)

(C-5) in Eq.(B-2), the pressure becomes

iNe U, (r) T 3f _(p,8)
PT(x,r,@o) = fA j I T & d] + az(p)pa.UA(p)

(c-6)

o

dkdcad;

(c-7)

2

0
b

cos

-
7

[»4

)
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. TAF_(p,3)  i((k- 5P
A\(k-a(p)mj6l/a(p) ) = ——-Ti—g—a- e'((k 2(PIm)Ep/a(p)) cost, e (c-8)
[o] o

After folding the m-series to m=0 to +wo , the pressure of Eq.(C-7)is

brought to
iNe U, (r)
A / 2 2
P_(x,r,9 ) = —— 1+ a%(p)p” - u,(p)
T o 21 g A

r

;T o :
© [ - ikka?f) - a?p) - a(%j COSQQ)
4 Ak, /a(0) JK(1K) e dk

M o= . i(k-a(m)(e"-8! cose }/a(r) -i(k-alp)m)c Palp)
+ =ZN)’ZN_C‘E(IK)nLA\(k-a(p)m)Gg/a(p)>Q<-a(r)m/e b ¢ e

m

0 . § i(k+a(r)m)(Gr-egcoswa)/a(r) -i(k+a(p)m)op/a(py \
+A((k+a(p)m)eb/a(p))(k+a(r)m)e e “dks

(c-9)

dp

Let k-a(p)m=u in the first term and k+a(p)m=u in the second term of the

second k-integral. Finally, [1.(C-9) can be written(for p < r) as

Np U, (r) 3
Prlrg)) = - LA [, (e) 1+ ()%
p

o . - iu(or-egcos@)/a(r) -iucp/a(p)ﬂ\
. % 5 u|o(up)Ko(ur)llmPartLA<u6g/a(p))e e | du
l o
M\ .- \
s 2 [u-(a(r)-a(e) m Jin(1u + a(p)mle)K_((u + a(p)mir)
m=N,2N o
. o ‘ i[u-(a(r)-a(p))mJ(or-choswa)/a(r) —iuop/a(p), \
. 1lmPartLA\u6b/a(p))e e L du
(c-10)
Lcont'd]

c3

N e - - R
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M ®
"wan ) L4420 -2(8) (I (6)ml o= 51m
. {lmPart£A<ue£/a(p)>ei[u+(a(r)-a(P))m](cr-e;cosqm)/a(r)e-iugp/a(p)JT}
f du
(c-10)
¢ ch




25

DISTRIBUTION LIST
(Contract NOOO1L4-77-Cc-0059)

Commander

DAVID W. TAYLOR NAVAL SHIP
ReD CENTER (Attn: Code 1505)

Bethesda, MD 20084

Officer-in-Charge

Annapolis Laboratory

DAVID W. TAYLOR NAVAL SHIP
ReD CENTER (Code 522.3)

Annapolis, MD 21402

Commander
NAVAL SEA SYSTEMS COMMAND
Washington, DC 20362
Attn: SEA 32R

312

3213

O5H

O5RI1

52

521

524

99612

Director

DEFENSE TECHNICAL INFORMATION
CENTER

5010 puke Street

Alexandria, VA 22314

OFFICE OF NAVAL RESEARCH
800 N. Quincy Street
Arlington, VA 22217
Attn: Code 438

OFFICE OF NAVAL RESEARCH
BRANCH OFFICE (493)

536 5. Clark Street

Chicago, IL 60605

Chief Scientist

OFFICE OF NAVAL RESEARCH WESTERN

REGIONAL OFFICE
1030 E. Green Street
Pasadena, CA 91106

OFFICE OF NAVAL RESEARCH
Resident Representative
715 Broadway (5th Floor)
New York, NY 10003

OFFICE OF NAVAL RESEARCH
San Francisco Area Office
760 Market Street, Room 4u7
Sar Francisco, CA 94102

Director (Code 2027)
NAVAL RESEARCH LABORATORY
Washington, DC 20390

LIBRARY OF CONGRESS
Science & Technology Division
Washington, DC 20540

Mr, D. Blount (6661)

NAVAL SEA SYSTEMS COMMAND
DETACHMENT

Naval Station

Norfolk, VA 23511

NAVAL UNDERWATER WEAPONS RESEARCH
& ENGINEERING STATION (Library)
Newport, Rl 02840

Commanding Office (L31)
NAVAL CIVIL ENGINEERING LABORATORY
Port Hueneme, CA 93043

Commander

NAVAL OCEAN SYSTEMS CENTER

San Diego, CA 92152

Attn: Dr. A. Fabula (L4007)
Dr. J. Hoyt (2501)
Dr. M. Reichman (6342)
Library

Library
NAVAL UNDERWATER SYSTEMS CENTER
Newport, R1 02840

Research Center Library
WATERWAYS EXPERIMENT STATION
CORPS OF ENGINEERS

P.0. Box 631

Vicksburg, MS 39180

CHARLESTON NAVAL SHIPYARD
Technical Library

Naval Base

Charleston, SC 29408




DISTRIBUTION LIST
(Contract NOOO14-77-C-0059)

NORFOLK NAVAL SHIPYARD
Technical Library
Portsmouth, VA 23709

PORTSMOUTH NAVAL SHIPYARD
Technical Library
Portsmouth, NH 03801

PUGET SOUND NAVAL SHIPYARD
Engineering Library
Bremerton, WA 98314

LONG BEACH NAVAL SHIPYARD
Technical Library (246L)
Long Beach, CA 90801

MARE 1SLAND NAVAL SHiPYARD
Shipyard Technical Library (202.3)
vallejo, CA 94592

Assistant Chief Design Engineer for
Naval Architecture (Code 250)

MARE ISLAND NAVAL SHIPYARD

vallejo, CA 94592

U.S. NAVAL ACADEMY

Annapolis, MD 21402

Attn: Technical Library
Dr. S.A. Elder

NAVAL POSTGRADUATE SCHOOL
Monterey, CA 93940
Attn: Library (2124)

Study Center

National Maritime Research Center
U.S. MERCHANT MARINE ACADEMY
Kings Point

Long Island, NY 11024

THE PENNSYLVANIA STATE UNIVERSITY

Applied Research Laboratory (Library)

P.0. Box 30
State College, PA 16801

Library

BOLT, BERANEK & NEWMAN
50 Moulton Street
Cambridge, MA 02138

BETHLEHEM STEEL CORPORATION
25 Broadway

New York, NY 10004

Attn: Library - Shipbuilding

R&D Manager

Electric Boat Division
GENERAL DYNAMICS CORPORATION
Groton, CT 06340

GIBBS & COX, INC.

Technical Information Control
21 West Street

New York, NY 10006

Library
HYDRONAUTICS, INC.
pPindell School Road
Laurel, MD 20810

MCDONNELL DOUGLAS AIRCRAFT COMPANY
3855 Lakewood Blvd
Long Beach, CA 90801
Attn: Dr. T. Cebeci
Mr. J. Hess

NEWPORT NEWS SHIPBUILDING AND
DRY DOCK COMPANY (TECH LIBRARY)

L101 Washington Avenue

Newport News, VA 23607

Mr. S. Spangler

NIELSEN ENGINEERING & RESEARCH,INC.
510 Clyde Avenue

Mountain View, CA 94043

SOCIETY OF NAVAL ARCHITECTS AND
MARINE ENGINEERS

Technical Library

One World Trade Center,Suite 1369

New York, NY 10048

SUN SHIPBUILDING & DRY DOCK CO.
Attn: Chief Naval Architect
Chester, PA 19000

Library

SPERRY SYSTEMS MANAGEMENT DIV.
SPERRY RAND CORPORATION

Great Neck, NY 11020




B

DISTRIBUTION LIST
(Contract NOOO14-77-C-0059)

Dr. B. Parkin, Director
Garfield Thomas Water Tunnel
APPLIED RESEARCH LABORATORY
P.0. Box 30

State College, PA 16801

STANFORD RESEARCH INSTITUTE
Library
Menlo Park, CA 94025

SOUTHWEST RESEARCH INSTITUTE

P.0. Drawer 28510

San Antonio, TX 78284

Attn: Applied Mechanics Review
Or. H. Abramson

TRACOR, INC.
6500 Tracor Lane
Austin, TX 78721

Mr. Robert Taggart
9411 Lee Highway, Suite P
Fairfax, VA 22031

Ocean Engineering Department
W00DS HOLE OCEANOGRAPHIC, INC.
Woods Hole, MA 02543

Technical Library

Alden Research Laboratory
WORCESTER POLYTECHNIC INSTITUTE
Worcester, MA 01609

Technical Library

Applied Physics Laboratory
UNIVERSITY OF WASHINGTON
1013 N.E. 40th Street
Seattle, WA 98105

UNIVERSITY OF CALIFORNIA
Naval Architecture Department
Berkeley, CA 94720
Attn: Prof. W. Webster
Prof. J. Paulling
Prof. J. Wehausen
Library

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, CA 91109
Attn: DOr. T.Y. Wu

Dr. A.J. Acosta

Library

Engineering Research Center
Reading Room

COLORADO STATE UNIVERSITY

Foothills Campus

Fort Collins, CO 80521

FLORIDA ATLANTIC UNIVERSITY
Ocean Engineering Department
Boca Raton, FL 33432
Attn: Technical Library

br. S. Dunne

Gordon McKay Library
HARVARD UNIVERSITY
Pierce Hall
Cambridge, MA 02138

Dept. of Ocean Engineering
Library

UNIVERSITY OF HAWAI!

2565 The Mall

Honolulu, H| 96822

Institute of Hydraulic Research
THE UNIVERSITY OF I0WA
fowa City, IA 52240
Attn: Library
Dr. L. Landweber

Fritz Engr Laboratory Library
Department of Civil Engineering
LEHIGH UNIVERSITY

Bethlehem, PA 18015

Department of Ocean Engineering
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, MA 02139
Attn: Prof. P. Leehey

Prof. J. Newman

Prof. J. Kerwin

Engineering Technical Reports

Room 10-500

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, MA 02139

St. Anthony Falls Hydraulic Lab
UNIVERSITY OF MINNESOTA
Mississippi River at 3rd Avenue S.E.
Minneapolis, MN 55414
Attn: Dr. Roger Arndt

Library




R-2063

DISTRIBUTION LIST
{Contract NOOO14-77-C-0059)

Dept. of Naval Architecture and
Marine Engineering - North Campus
UNIVERSITY OF MICHIGAN
Ann Arbor, MI 48109
Attn: Library
Dr. T. Francis Ogilvie

Davidson Laboratory
STEVENS INSTITUTE OF TECHNOLOGY
711 Hudson Street
Hoboken, NJ 07030
Attn: Library
Dr. J. Breslin

Applied Research Laboratory Library
UNIVERSITY OF TEXAS

P.0. Box 8029

Austin, TX 78712

STANFORD UNIVERSITY

Stanford, CA 94305

Attn: Engineering Library
Dr. R. Street

Library

WEBB INSTITUTE OF NAVAL ARCHITECTURE
Crescent Beach Road

Glen Cove

Long Island, NY 11542

NATIONAL SCIENCE FOUNDATION
Engineering Division Library
1800 G Street N,W.
Washington, DC 20550

Dr. Douglas E. Humphreys, Code 794
NAVAL COASTAL SYSTEMS LABORATORY
panama City, FL 32401

Y




DATE
FILMED

4 *
. .

DTIC




